Thermal Ring Transformation of 5-Aryl-2-carbazoyl-1,2,3,4-tetrazole Derivatives

René Milcent* and Géo Barbier

Laboratoire de Chimie Organique Médicale, Université Paris 7, Faculté de Médecine Xavier Bichat,
16, rue Henri Huchard,
75018 Paris, France
Received April 20, 1987

Unstable 5-aryl-2-(3-benzylidene-2-phenylcarbazoyl)-1,2,3,4-tetrazoles 8 have been prepared. By thermal ring transformation, they gave 5-aryl-2-(2-benzylidene-1-phenylhydrazino)-1,3,4-oxadiazoles 9. Hydrazinolysis of 9 afforded 5-aryl-2-(1-phenylhydrazino)-1,3,4-oxadiazoles 10. Elimination of a molecule of benzonitrile from 9 on heating converted them into 2-anilino-5-aryl-1,3,4-oxadiazoles 11.

J. Heterocyclic Chem., 24, 1233 (1987).

The thermal ring transformation of 2-carbamoyl-1,2,3,4-tetrazoles 1 or 2-thiocarbamoyl-1,2,3,4-tetrazoles 2 into the corresponding derivatives of 2-amino-1,3,4-oxadiazoles, 3 or 2-amino-1,3,4-thiadiazole, 4 have been reported [1-3]. On the other hand, no work has been done on the thermal rearrangement of 2-carbazoyl-1,2,3,4-tetrazole derivatives 5.

With the aim to contribute to this study and to prepare new 2-hydrazino-1,3,4-oxadiazoles for industrial purposes, sodium salts of 5-aryl-1,2,3,4-tetrazoles 6 were treated with benzaldehyde 2-chloroformyl-2-phenylhydrazone 7 in dry dimethylformamide at 0°. The resulting 5-aryl-2-(3-benzylidene-2-phenylcarbazoyl)-1,2,3,4-tetrazoles 8 were unstable oils which were transformed into 5-aryl-2-(2-benzylidene-1-phenylhydrazino)-1,3,4-oxadiazoles 9 on refluxing in toluene.

Compounds 9 were formed in one step when the reaction of the chloroformylhydrazone 7 with aryl tetrazoles 6 was carried out with the presence of sodium bicarbonate

Table I
Compounds 9, 10 and 11

	_	Yield			Analyses Calcd./(Found)				
No.	R	% [a]	∘C	Formula	С	H	N	IR, ν cm ⁻¹	'H NMR [b] δ ppm
9a	C ₆ H ₅	72	158-159 [c]	$C_{a1}H_{16}N_{4}O$	74.1 (74.1)	4.7 (4.8)	16.5 (16.7)	1605, 1575, 1550, 1485	7.2-8.2 (m)
9Ь	4-CH ₃ O-C ₆ H ₄	71	149-150 [c]	$C_{22}H_{18}N_4O_2$	71.3 (71.4)	4.9 (4.9)	15.1 (15.3)	1595, 1575, 1550, 1490	3.85 (s, 3H), 7.1-8.1 (m, 15H)
9c	4-Cl-C ₆ H ₄	75	136-137 [c]	C21H15ClN4O	67.3 (67.2)	4.0 (4.0)	15.0 (14.9)	1590, 1560, 1540, 1480	7.3-8.1 (m)
10a	C ₆ H ₅	22	131 [c]	C14H12N4O	66.7 (66.6)	4.8 (4.8)	22.2 (22.1)	3330, 3280, 3190, 1640, 1600	5.75 (sl, 2H), 7.1-8.2 (m, 10H)
10Ь	4-CH ₃ O-C ₆ H ₄	40	147-148 [d]	C15H14N4O2	63.8 (63.7)	5.0 (4.9)	19.9 (19.8)	3340, 3270, 3190, 1595, 1570	3.9 (s, 3H), 5.7 (sl, 2H), 7.1-8 (m, 9H)
16e	4-Cl-C ₆ H ₄	26	165-166 [d]	C ₁₄ H ₁₁ ClN ₄ O	58.6 (58.6)	3.9 (3.9)	19.5 (19.6)	3320, 3290, 3180, 1640, 1590	5.8 (s, 2H), 7.1-8.1 (m, 9H)
lla	CeH2	91	210 [c,e]	$C_{14}H_{11}N_{3}O$				3265, 1600, 1575	7-8.1 (m, 10H), 10.7 (s, 1H)
11b	4-CH ₅ O-C ₆ H ₄	85	198-199 [c,f]	$C_{15}H_{13}N_{3}O_{2}$				3260, 1615, 1580	3.95 (s, 3H), 7-8 (m, 9H), 10.6 (s, 1H)
11c	4-Cl-C ₆ H ₄	92	253-255 [c,g]	$C_{14}H_{10}CIN_3O$				3265, 1620, 1600, 1590, 1570	7-8 (m, 9H), 10.7 (s, 1H)

in dry dimethylformamide for 30 minutes at 120°.

By analogy with the mechanism proposed by Huisgen et al for the thermal transformation of compounds 1 and 2 [1], the transformation of compounds 8 to 9 requires the formation of a dipole intermediate followed by cyclization.

Analogous thiocarbazoyl derivatives of 8 could not be prepared in the same way because the benzaldehyde 2-chlorothioformyl-2-phenylhydrazone was not obtained by reaction of the benzaldehyde phenylhydrazone with thiophosgen.

The reaction of 9 with 2,4-dinitrophenylhydrazine in refluxing ethanol for 3 hours yielded new 5-aryl-2-(1-phenylhydrazino)-1,3,4-oxadiazoles 10.

Heating of 9 in refluxing dimethylformamide for one hour or at dryness above 200° for some minutes, resulted in a formation of the corresponding 2-anilino-5-aryl-1,3,4-oxadiazoles 11 with elimination of a molecule of benzonitrile.

This last reaction has some similarity with the thermal reaction of quaternary hydrazonium salts of benzaldehyde which are decomposed at 240-250° to form benzonitrile and quaternary ammonium salts [4].

We propose a 4-centered cyclic process for this new reaction as in many pyrolytic β -eliminations [5].

Assignment for the structures of the compounds 9, 10 and 11 (Table I) was provided by elemental analysis and ir and 'H-nmr spectra. Compounds 10 show three N-H absorption bands assignable to their possible structures A and B with an intramolecular hydrogen bonded NH group. By reaction of 10 with benzaldehyde, compounds 9 were regenerated. Products 11 were found identical with authentic samples [6].

EXPERIMENTAL

Melting points (uncorrected) were taken with a Buchi oil heated apparatus. The ir spectra were recorded on a Perkin-Elmer 1310 spectrophotometer as potassium bromide disks. The 'H-nmr spectra were obtained in DMSO-d₆ on a Brucker WP 80 spectrometer and are reported as δ values (ppm) relative to tetramethylsilane as an internal standard.

5-Aryl-2-(3-benzylidene-2-phenylcarbazoyl)-1,2,3,4-tetrazoles 8.

Sodium hydride (50% in oil) (0.48 g, 10 mmoles) was added to a stirred

solution of 10 mmoles of 6 in 40 ml of dry dimethylformamide at 0°. When hydrogen gas evolution ceased, a solution of 2.58 g (10 mmoles) of chloroformylhydrazone 7 in 20 ml of dry dichloromethane was slowly added at 0°. The reaction mixture was stirred for 30 minutes at 0° and poured onto 200 ml of ice-water. Compounds 8 were extracted with ether and the organic layer was separated, washed several times with water and dried over anhydrous magnesium sulfate. After removal of the ether, each compound 8 was obtained as an impure, unstable and dense oil which decomposed by chromatography.

5-Aryl-2-(2-benylidene-1-phenylhydrazino)-1,3,4-oxadiazoles 9. Method A.

To a stirred solution of 10 mmoles of 6 in 40 ml of dry dimethylformamide were added 2.58 g (10 mmoles) of 7 and 1 g (12 mmoles) of sodium bicarbonate. The reaction mixture was stirred for 30 minutes at 120° and filtered. After removal of the solvent, the crude residue was dissolved in 100 ml of hot ethanol. The solution was filtered and the solvent evaporated. Compounds 9 were recristallized from ethanol.

Method B.

A solution of 10 mmoles of 8 in 50 ml of toluene was refluxed for one hour. After removal of the solvent, the resulting residue was recristallized from ethanol.

5-Aryl-2-(1-phenylhydrazino)-1,3,4-oxadiazoles 10.

To a solution of 10 mmoles of 9 in 50 ml of ethanol, was added 1.98 g (10 mmoles) of 2,4-dinitrophenylhydrazine. The mixture was stirred at reflux for 3 hours and filtered. After removal of the solvent, the compounds 10 were purified by column chromatography on silica gel 60 0.05-0.2 mm (Macherey-Nagel) using benzene:ethyl acetate (19:1) as the eluent and recrystallized from ethanol or 1-propanol.

2-Anilino-5-aryl-1,3,4-oxadiazoles 11.

A solution of 10 mmoles of 9 in 40 ml of dimethylformamide was refluxed for one hour. After removal of the solvent, compounds 11 were recristallized from ethanol.

REFERENCES AND NOTES

- [1] R. Huisgen, H. J. Sturm and M. Seidel, Chem. Ber., 94, 1555 (1961).
- [2] N. A. Dahle, U. S. Patent, 3,790,588 (1974); Chem. Abstr., 80, 82993 (1974).
- [3] N. A. Dahle and W. C. Doyle, Jr., U. S. Patent, 3,808,223 (1974); Chem. Abstr., 81, 13524 (1974).
- [4] R. B. Hanson, F. Foley, Jr., E. I. Anderson and M. H. Aldbridge, J. Org. Chem., 35, 1753 (1970).
- [5] R. F. C. Brown, "Pyrolytic Methods in Organic Chemistry", Vol 41, H. Wasserman, ed, Academic Press, 1980, p 73.
 - [6] R. Madhavan and V. R. Srinivasan, Indian J. Chem., 7, 760 (1969).